
Designing Software for Testability 
Alfred J. Barchi 

ajb@ajbinc.net
http://www.ajbinc.net/

 
 

Abstract 
As software-based systems and applications become increasingly more complex, there is 
a tendency for them to become increasingly fragile and less stable.  One obvious reason 
for this is that the bigger and more complex a software application becomes, the more 
difficult it becomes to adequately test.  Currently available commercial software testing 
products attempt to address this by replacing the user I/O functions (keyboard, mouse, 
display window, etc.) with a script-driven test manager that exercises the software 
product.  This approach suffers from the problem that software is seldom designed to 
work in this type of environment, and the number of ways that a software product can 
interact with its environment is relatively unconstrained, whereas the capabilities of the 
automated test tools aren’t. 
 
This paper outlines an architectural approach to designing software that is amenable to 
being tested with automated test tools.  With this approach, commercial test suites can be 
combined with engineering software written specifically to test a software product, in 
order to provide a more effective means of performance testing, regression testing and 
stability testing. 
 
In the past, developers and managers have argued that adding functionality that does not 
support the mission of the software is an expense that is not justified, either by customer 
requirements or commercial value.  The author makes that case that designing for 
testability is always justified, both by the need to adequately verify that requirements are 
being met and by the commercial advantage of producing a more stable, error-free 
product.  This increases customer acceptance and reduces maintenance costs.   
Additionally, the author argues that an architecture that supports testability is inherently 
more adaptable to new uses, and ultimately saves future development costs. 
 
 

The Problem 
The problem, simply stated, is that software development organizations have a tendency 
to develop products that are difficult to test.  They don’t make the effort to design in 
features to avoid this problem.  There are a variety of reasons offered for this:  “It’ll cost 
too much money!”  “It’ll take to much time!” “It’s too difficult!” “It’s not in the spec!”  
“We’ll just use X-Runner (or Win-Runner, or Rational Robot, etc.).”  “It doesn’t add any 
value to the final product.” 
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I’ve heard all of these reasons and more, over the years, coming from some highly 
intelligent and capable software engineers.  In addition, engineers and engineering 
managers have a tendency to equate the verification and validation process with the 
testing process.  This last fallacy has even been institutionalized in such engineering-
process/baseline-management standards as DoD-Std-2167A and Mil-Std-498, both of 
which cover the V&V process, performance testing to verify performance requirements, 
etc., but do not contain separate sections for stability testing, ensuring that the product 
handles inputs correctly over the entire range of allowable values, processes invalid 
inputs correctly, and functions correctly in contended environments (i.e., on a host 
computer where there are other, unrelated processes running simultaneously and using 
system resources, such as on a server).  Basically, if you want your software product to 
work correctly over its entire range of inputs, you have to write a requirement that says 
this and then verify the requirement! 
 
One might expect that a systems engineering department full of engineers raised on a diet 
of black-boxes, feedback control loops and the theory of control systems would tend to 
view the software development process as a closed-loop control system with testing 
providing the feedback path necessary to produce high quality results.  Well, they don’t (I 
was once asked to remove the word “hysteresis” from a presentation I was preparing to 
give because none of our “engineers” knew what it meant).  You can draw all of the 
diagrams of the software development process that you want, you can show your 
management that you have, at least in theory, a process that will produce good results, but 
unless you understand what testing really means in such a system, your results will be 
less than spectacular, i.e., cost overruns, schedule slips, serious design flaws, instability 
and buggy behavior of your final product, etc.  Testing is more than just a box on a 
process diagram, and you need to have a thorough understanding of what that box 
represents. 
 
“It’ll cost too much money!”, “It’ll take to much time!”  and “It’s not in the spec!” – 
What does this really mean?  The person saying this generally means that his existing 
design concept doesn’t support testing very well and he perceives that making his design 
testable will require additional features that nobody planned for when the original 
proposal was submitted (whether for an in-house development or as an external contract).  
Unfortunately, from his perspective, he is correct, and it will be very difficult to change 
his thinking. 
 
Yes, testing costs more than not testing (at least initially).  Yes, developing automated 
tests means you have to write software, whether you are using a tool such as X-Runner or 
writing your own test software from scratch.  Yes, fixing the problems that testing 
surfaces takes time and can jeopardize your delivery schedule.  However, designing your 
product in such a way that you can test it with automated test tools does not mean that 
you have to write more code, merely that you have to organize things somewhat 
differently. 
 
“It’s too difficult!” and “It doesn’t add any value to the final product.” – The person 
who says this really means that he doesn’t understand the testing process, doesn’t 
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understand the concepts of flexibility and adaptability, and would just as soon not be 
bothered (I once had a high-level executive respond to my assertion that we needed to 
test our products better before we shipped them, “Al, our customer has a whole 
department full of people spending 8 hours a day trying to get work done on our product.  
They’ll find our bugs a lot faster than you ever will through in-house testing, and they’ll 
call us when they do.  And what’s more, we can generally get them to pay us to fix our 
problems!”  Of course, we had difficulty getting any new development work done 
because our engineers were constantly at customer sites all over the country debugging 
software problems, and we had to use our in-house computers like a travel agency, and 
we also got threatened with lawsuits a lot.  The problem (aside from the obvious ethical 
issue) with this approach is that detecting a bug is considerably easier sometimes than 
diagnosing and fixing it.  You still have to spend considerable time in some cases to 
develop test software to help you debug a problem.  Not only that, but your customers 
might not recognize anomalous behavior as a problem until it results in some secondary 
loss or damage. 
 
The fact is that it’s not too difficult to make software amenable to automated testing, if 
you understand the principles involved.  In addition, the architecture required to 
accomplish this has the added benefits of making your product more “flexible” (i.e., 
easier to migrate to newer technologies as they become available), and more “adaptable” 
(i.e., easier to adapt to new uses that were not part of the original purpose for making the 
product).  These last two benefits ultimately lead to the opportunity to generate higher 
revenues for less cost. 
 
“We’ll just use X-Runner (or Win-Runner, or Rational Robot, etc.).” – Someone who 
says this simply doesn’t understand the nature of the problem.  Automated test tools such 
as these are typically excellent, well-thought-out products, but they do have their 
limitations. 
 
First, they’re slow.  They typically work by intercepting calls to and returns from the 
presentation layer (X-Windows, MS-Windows, MFC, etc.).  Operations such as 
keystrokes, mouse-clicks, etc. are recorded as a script that is later played back through an 
interpreter to duplicate these operations.  Behavior of the product-under-test is compared 
to recorded values that were returned when the script was recorded.  Any interpretation of 
these values generally requires a developer to write additional code in the script language.  
This code is also executed by the interpreter, which further slows down the process. 
 
Second, they place their own significant limitations on the architecture of the system.  In 
order for your test tool to understand window objects such as frames, buttons, edit boxes, 
etc., and not just pixels, you have to design your HMI interface in a specific way, or the 
test tool cannot interface with it.  The APIs for X-Windows, MS-Windows and Microsoft 
Foundation Class are vast and complex, and it is beyond the ability of anyone to 
anticipate all of the variations possible when using these frameworks, particularly when 
developers start using undocumented features (“MFC Internals” by Shepard and Wingo is 
an excellent, 700 page example of how to do exactly this with MFC). 
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Third, the functionality that you typically need to test is the stuff that lies behind the 
human-machine interface, not the interface itself (you have to test that too, but that’s a 
topic for a different paper).  In order to do this in an automated way, you have to create 
test software with the ability to analyze outputs over a wide variety of inputs.  This is 
difficult to do efficiently in the scripting languages these tools provide, and if you do it 
externally to the test tool, then you will discover that interfacing your analysis software to 
the test tool is problematic. 
 
Fourth, these tools are typically not what you would want to use for detecting stability 
problems, such as memory leaks, boundary-limit problems (e.g., writing past the end of a 
queue), race conditions and deadlocks.  The reason for this is that the tools are large, slow 
and cumbersome and they affect the underlying timing of the software being tested.  To 
detect stability problems, particularly in a client-server architecture, you need to run lots 
of clients simultaneously under heavy loads in order to manifest the problems in an 
efficient manner.  If I need to run 30 clients to do this, for example, and I can only run 5 
because of the limitations of my test tool, I have a problem. 
 
The good news is that if you design your product correctly, you don’t even need these 
tools for testing your core functionality (you still might need them for testing the HMI). 
 
The next section discusses the general design principles necessary to make software 
amenable to automated testing.  Following this, there is a section that uses a concrete 
example to illustrate how these principles are applied.  The example itself is trivial, the 
discussion of the application of the design principles is not.  After that, there is a 
discussion of the secondary benefits of applying these design principles effectively, 
followed by a closing summary of what was discussed. 
 
 

General Design Principles 
This section describes the principles involved in designing software for testability.  Some 
of this may sound pretty trivial and basic.  Please bear with me.  Think of it the same way 
you would think of the fundamental principle for making money in the stock market:  
“Buy low, sell high.”  As simple as it sounds, a lot of intelligent people lose money in the 
stock market every day, because they buy high and sell low. 
 
#1:  Identify the core functionality – This is not always easy to do.  For example, consider 
a program like Quicken or Microsoft Money.  Is the portion of the software that displays 
an account register and accepts new entries, deletions and changes part of the core 
functionality?  Or, how about a sound wave editor?  Is the portion of the software that 
displays the wave in a window and accepts edits to the wave part of the core 
functionality? 
 
The answer is that the core functionality is that which gives your software its identity.  
Displaying a window on a graphics display is part of the core functionality of X-
Windows, or MS-Windows or whatever other framework you use to write to a graphics 
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display.  The same is true for accepting keystroke and mouse inputs.  In the examples 
above, the software that interprets keystroke and mouse inputs passed to it from the 
window-management system is core functionality, as is the software that maintains an 
internal representation of the register or the sound wave and knows how to draw them, 
but not the software which actually does the drawing. 
 
This is an important distinction, because when you define the interface to your core 
functionality properly, it allows you to design automated tests to determine such things as 
whether it works over its full range of valid inputs, whether it works correctly when 
subjected to a wide range of invalid inputs, whether it is thread-safe, etc.  It also allows 
you to re-use such tests as part of a regression-testing program. 
 
 
#2:  Encapsulate the core functionality – No, this is not going to be a discussion of the 
merits of object-oriented programming.  All I mean here is that you need to identify the 
elements of your software that you want to test with automated and isolate them behind a 
call-level interface.  Consider the following test for encapsulation: 
 

1. Can I compile the software that defines my core functionality in a separate 
module? 
 

2. Can I call my core software functions from a different programming language? 
 

3. Can I migrate my core software to a new host or programming environment (e.g., 
migrate from MS-Windows to Unix)? 
 

4. Can I exercise all of the functions and set all of the options and parameters of my 
core software via my call-level interface? 
 

5. Can I bypass my call-level interface? 
 
Some proponents of object-oriented programming will likely proclaim that when you 
code your software using an object-oriented language such as C++ or Smalltalk, you 
automatically achieve encapsulation, since encapsulation is one of the principles on 
which object-oriented programming is based and one of the basic features of the 
definition of object classes.  Well … it depends on what you mean by “encapsulation.”  
Or, to put it another way, “How ‘black’ is my black-box?”  Consider items #1 and #2 
above.  If I define an object class using C++ and then publish a definition of the public 
portions of it in a header file, I can certainly compile it as a separate object module that is 
later linked to the main program when the program is built.  But, can I write the main 
program in any program other than C++?  Well, you might want to do this if you want to 
write your test software in Visual Basic, Java or Rational Robot’s script language, for 
example. 
 
The fact is that there are several issues that you have you deal with whenever you 
program in a language such as C++ which uses strong data-typing and other abstractions 
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such as object classes.  First, if you define an object class interface, you also have to 
include some method for instantiating the object.  This means that the language that your 
test software uses must also support this, and in the same way.  Second, strongly typed 
languages typically require a support environment that includes exception handlers.  This 
means that you don’t just write stand-alone modules in C++ or Ada, for example, and 
expect to successfully link them into a C, Fortran or Basic main program.  Third, when 
you mix languages, you always have to deal with inconsistencies in the internal 
representation of data structures. 
 
Item #1 is also important as a mental test to verify that you have a clear understanding of 
just what your core functionality really is. 
 
Item #3 is a test of how divorced your software is from the underlying environment.  For 
example, if you use MFC string manipulation functions, you’re going to have a difficult 
time migrating to a Unix platform – this isn’t necessarily a bad thing, just something to 
be keep in mind.  You are also going to be exercising MFC string manipulation functions 
every time you test your software.  You have to be aware of this whenever you re-
compile your software with an updated version of MFC.  Using threads is another 
potential source of problems.  Different thread libraries tend to function slightly 
differently and may contain bugs.  You not only need to test for these problems, but you 
need to design your test software in such a way that it can migrate along with your core 
software.  Item #3 may not really be as germane to testing as some of the other aspects of 
encapsulation, but it is important to the bottom line. 
 
Item #4 is a key point to remember when you design your core software.  The goal that 
you want to achieve with automated testing is a stand-alone suite of tests that can run 
overnight, unattended.  If manual intervention is required to change settings or 
parameters, you will obviously have a much more difficult time achieving this goal. 
 
As far as item #5, if you can bypass your API, then there is another interface that you 
have to test.  You also have to test for unexpected problems arising when you attempt to 
use both interfaces simultaneously (particularly if your core software has states or uses 
multi-call transaction sequences). 
 
The reason that I recommend a call-level interface is that it is simple and you can use it 
no matter how complex your core software is.  Basically, you make a call to a single 
interface function and pass it a pointer to a data structure that contains numerical value 
that represents the operation to be performed as well as any other information required by 
the operation.  The interface function executes a ‘case’ statement to call the function that 
performs the specific operation being requested.  Return data is passed back the same 
way, and can even be passed back in the same data structure, depending on what 
operation is being performed. 
 
Not only does virtually every programming language in existence support this kind of 
interface, but you can build a simple front end which allows it to run as a stand-alone 
module.  This is significant when you consider that some automated test tools, such as 
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early versions of X-Runner, do not allow you to link pre-compiled object modules 
directly to their internal test scripts.  The test scripts are executed by an interpreter 
internal to the test tool – you would have to link your pre-compiled module directly to 
this, and then have some mechanism built into the test script language to allow you to 
invoke your pre-compiled module, all of which imposes significant constraints on the 
kind of interface you can use and tends to discourage test tool vendors from even making 
the attempt to provide this kind of functionality.  This is a similar situation to the one 
addressed by the Java Native Interface (JNI).  With JNI you generate special header files 
for your application and compile and load it as a shared library in order to call it from 
within Java – this is an example of a significant constraint. 
 
#3:  The kind of functionality that you want to test helps define your API – The example 
that I will discuss in the next section provides a good illustration of this.  Basically, when 
you pass data between your core software and your external interfaces, you want to 
minimize the amount of translation which takes place, especially when you are mixing 
programming languages or targeting multiple host environments.  Additionally, you need 
to consider whether there is any data, such as state information, that is being used within 
your core software that would facilitate testing if you were to expose it via your API.  
And, finally, you need to consider whether there is any additional data, such as time-tags, 
which it would be useful for your software to collect and pass to the test software, any 
additional data that it would be useful for your test software to send to your core 
software, and any additional functionality that your core software needs to provide to 
facilitate testing. 
 
#4:  You shouldn’t have to add extra functionality or write extra software just to support 
testing – Your test software should treat your core software as a black box.  It needs 
sufficient control via your API to completely exercise all of the functionality of this black 
box.  If you find yourself adding additional functions or data to the API in order to 
accomplish this, it usually means that there are other requirements on your design that 
you haven’t discovered yet and which will become manifest later on in the design 
process. 
 
That’s it.  The principles are simple.  They are easy to apply, in theory.  But as Yogi 
Berra once said, “In theory, there is no difference between theory and practice … in 
practice there is.”  The next section uses an example to discuss how to apply these 
principles. 
 
 

Discussion by Example 
As they say in the chess world, there is theory and then there is praxis.  Anyone who has 
ever read a chess book knows that even the most theoretical of them rely heavily on 
examples to demonstrate how principles are applied in real-life situations.  The reason for 
this is that theoretical principles cannot simply be applied blindly or in a mechanical 
fashion.  In chess, although there may be many situations with similar characteristics, 
each different position is also unique in some way, and abstract principles must be 
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weighed and balanced against one-another and tailored to the immediate situation.  It is 
this ability to place principles in perspective and exploit the unique characteristics of any 
given situation that separates the master from the amateur.  And so here is an example to 
help illustrate the application of the principles of designing software for testability.  The 
example itself is a trivial application, easy to implement in a single afternoon.  
Nevertheless, the same design principles still apply, regardless of how small and simple 
or how big and complex the project. 
 
Many years ago, when I was shopping for my first house, I wanted to compare mortgage 
rates and different options for length of loans and early payoffs.  So I wrote a set of 
calculators.  One computed the size of a payment given the initial loan size, interest rate 
and term.  Another one based on the same algorithm printed out a complete amortization 
schedule.  A third one computed the term required to amortize a loan given the principal, 
interest rate and size of the payment.  A fourth calculator determined the interest rate 
from the principal, payment amount and number of payments. 
 
Over the years I have implemented these calculators in C, Basic and even in spreadsheets.  
For this paper I decided to implement all four in a single application, written in C++ and 
using a modeless dialog box with the Microsoft Foundation Class (MFC) library.  Since I 
already had these calculators written in C, I was able to reuse most of this code. 
 
The dialog box would have edit boxes for each value:  principal, yearly interest rate, 
number of payments per year, total number of payments, payment size, total interest paid 
and total amount paid.  The amortization schedule would be displayed in a pop-up text 
edit window, and would utilize the built-in capabilities of MFC to edit it and save it as a 
text file.  The dialog box would contain command buttons to execute each type of 
calculation as well as a ‘help’ button and an ‘exit’ button.  It would also have a pop-up 
modal dialog window that would display ‘about’ information (version number, copyright 
notice, etc.).  The ‘help’, ‘exit’ and ‘about’ functions are provided as standard features by 
MFC. 
 
The first thing to consider was the question of just exactly what was the core 
functionality of this application.  The first pass at this was easy, particularly since I 
already had most of this code written.  My core functionality consisted of all the 
functions necessary to perform financial calculations and generate amortization tables.  
As the design matured, I would re-visit this question a couple of times, at least partly 
because of the vagaries of MFC. 
 
The second question was also easy, at least at a high level – how do I encapsulate my 
core functionality.  Since, as I stated in the previous section, I am fond of doing this by 
implementing a single API control function that is called with a pointer to a structure 
containing the operation to be performed along with necessary data, this is what I did.  
Initially, the structure looked something like this: 
 
 typedef struct finance { 
    unsigned short int  command ; 
    double              principal ; 
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    double              yearly_interest_rate ; 
    double              periods_per_year ; 
         unsigned long int   term ; 
         double              payment ; 
         double              total_interest ; 
         double              final_value ; 
         char               *amortization_table ; 
      } *finance_data ; 
 
The actual parameter that is passed to my API function is a pointer of type ‘finance_data’ 
which points to a structure that can either be static or dynamically allocated.  The 
amortization table is generated using a string buffer that is dynamically allocated and 
resized upon completion of the table so that it matches the size of the table.  The table 
itself is a single long text string. 
 
All of the values, including result values as well as inputs provided by the user are 
included in this single structure.  There were two reasons for this.  First, I wanted to have 
a single data block that contained all of the information that would be displayed in the 
dialog box.  And second, some of the computed values could actually be used as inputs or 
fed back in to the other types of calculations.  Placing all of the values in a single data 
block meant that I didn’t have to move data around to accomplish this. 
 
The next task was to design the user interface.  The Microsoft Development Studio 
makes this easy.  I specified the kind of application that I wanted to create and it 
generated all of the skeleton code necessary to do this.  I then laid out how I wanted the 
dialog box to look and tied the buttons and edit windows to MFC message handlers that 
called my core software.  All of this took very little time.  Initially I used the standard 
DoDataExchange function provided by MFC along with the appropriate DDX and DDV 
calls to load, retrieve and validate data in the dialog boxes. 
 
Unfortunately, I wasn’t satisfied with the behavior of my application when I used the 
standard mechanisms provided by MFC.  When you use the DDX functions, MFC passes 
the entire text string in the edit box.  Unfortunately, when you send a string to an edit 
box, MFC places the curser to the left (or beginning) of the string, rather than to the right.  
When you use the DDV functions, if an illegal value has been entered, the standard 
validation function pops up a modal dialog window that tells you that you just entered an 
illegal value and highlights the entire string in the edit box.  The DoDataExchange 
function that calls the DDX and DDV functions is only called when you change the focus 
from the current dialog control (e.g., the edit box) to a different one. 
 
What all of this means is that using the standard mechanisms of MFC, my application 
would allow a user to enter any number of illegal characters into an edit box and then 
prompt him to edit or re-enter the entire value when he is done.  This was unsatisfactory 
to me.  I wanted my application to validate keystroke entries on the fly and simply not 
allow a user to enter an illegal value. 
 
I couldn’t simply set up a message handler that got called whenever a new character was 
entered into an edit box, validate the string, correct it and write out the validated string 
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back to the edit box because of the problem with the cursor changing position (I wanted 
the cursor to remain on the right end of the edit box after making a correction).  I also 
couldn’t do this by calling DoDataExchange from the OnChangeEdit function because 
this sets up an infinite loop which locks up the computer (DoDataExchange causes a 
change to the edit box which then invokes the OnChangeEdit function which calls 
DoDataExchange …).  Argghhh! 
 
I discovered that I could validate the last character entered by fetching the entire string 
from the edit box window while in the OnChangeEdit function, validate the last character 
entered using my own validation code (remember, the DDV functions don’t behave the 
way I want them to and cannot be called from the OnChangeEdit function anyway), and 
if it is an illegal character, simply send a backspace character to the edit box window 
using the a ‘WM_CHAR’ message.  As long as I was careful to deal with the special case 
of the first character to be entered in the edit box (MFC calls itself recursively when you 
send a window message, which causes OnChangeEdit to be called again with a zero-
length string when you backspace the first character), I was OK and I could obtain the 
behavior I wanted.  (As a side note, I don’t currently have access to Win-Runner or 
Rational Robot, and I have no way of knowing whether these tools would correctly 
handle this kind of behavior.) 
 
So I ended up writing my own input validation functions.  Are these functions part of my 
application’s core functionality?  The simple answer is ‘yes’.  The financial calculation 
functions expect to receive only valid inputs.  The validation functions not only contain 
the definition of a valid input for this application, but they are essential to ensure the 
correct operation of the calculation functions. 
 
So how do I encapsulate this functionality?  Simple, I use the same call-level interface 
and pass a different data structure, which contains the command code to invoke the 
appropriate validation function as the first value, and the string data to be validated as the 
second value.  Since different fields had different allowable values, I had to use a 
different command code for each different edit box string type to be validated. 
 
My data structure now looked something like this: 
 
 typedef struct finance { 
 
    unsigned short int  command ; 
 
    union { 
 
  struct finance_values { 
 
          double              principal ; 
          double              yearly_interest_rate ; 
          double              periods_per_year ; 
               unsigned long int   term ; 
               double              payment ; 
               double              total_interest ; 
               double              final_value ; 
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               char               *amortization_table ; 
 
       }  data ; 
 
  struct valid_string { 
 
          char               *validation_string ; 
     unsigned short int  valid_string_flag ; 
 
  }  validation ; 
 
    } 
      } *finance_data ; 
 
It’s getting messier but it’s still manageable. 
 
Now it was time to apply principle #3.  What behavior did I want to test?  Well, for 
starters, I wanted to make sure that it computes the correct values for its inputs.  This is 
hardly the type of testing that would drive me to develop an automated test, although I 
might consider this approach for the purpose of regression testing if my application were 
large and complex. 
 
As it turns out, even a trivial example like this can pose some interesting problems for 
which automated testing would be appropriate.  In this case, the values that are computed 
by the different operations all achieve their results somewhat differently.  The payment 
function computes the size of the payment using a compound interest formula.  The 
“term” computation is done by running a loop that computes current interest and 
principal based on outstanding balance and deducts the principal from the balance until 
the balance is reduced to zero.  The interest rate is computed using a binary search 
algorithm.  These different methods result in slightly different final values due to 
differences in round-off methods, etc.  When I was running these computations one at a 
time from a command prompt these differences were mildly annoying but of no great 
significance.  However, with the new application, you can sit there and click on the 
different buttons repeatedly, and the numbers will constantly change.  Eventually, after a 
number of operations, the changes reach the point where the total number of payments 
changes, causing a major change in the other numbers.  This kind of behavior is totally 
unacceptable. 
 
The way to correct the problem is to adjust the way each algorithm does its round-off so 
that they all produce the same outputs over a wide range of input values.  But how do you 
know when your tweaking has been successful?  The answer is to write a front-end test 
module that exercises the application over a wide range of inputs for each operation and 
compares the input to the output values.  This would be easy enough to do except for the 
fact that round-off can occur when the floating point numerical values are converted back 
and forth between text-string and internal binary floating-point format.  This was 
happening whenever a value was read in from or written out to an edit box. 
 
It became clear that since I was concerned about the actual content of the edit box strings 
themselves, the software that generated and translated these strings would need to be part 
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of the core functionality.  The API would have to pass actual string values so that the 
conversions could be controlled within the core software.  This actually led to a 
simplification of the API data structure: 
 
 typedef struct finance { 
    unsigned short int  command ; 
    unsigned short int  valid_string_flag ; 
    char               *principal ; 
    char               *yearly_interest_rate ; 
    char               *periods_per_year ; 
         char               *term ; 
         char               *payment ; 
         char               *total_interest ; 
         char               *final_value ; 
         char               *amortization_table ; 
      } *finance_data ; 
 
Simple.  Straightforward.  Elegant. 
 
Now I could not only develop a simple test driver to validate any tweaks I made to the 
algorithms, but the core software now had total control over the exact content of the edit 
boxes.  As for design principle #4, no extra code was written to accommodate testing 
(OK, so an API control function was added – basically a large case statement – but I 
would have done this anyway, for other reasons which I’ll discuss in the next section).  
All that was required was to account for the need for automated testing while organizing 
the structure of the application.   
 
Although this is a trivial example that took longer to write about than it did to design, this 
same approach can be applied to even really huge designs with millions of lines of code.  
The interfaces can get considerably more complex, and there can be considerably more of 
them, but the same underlying principles apply. 
 
 

Beneficial Side-Effects 
Essentially, this paper describes an approach for developing software that encapsulates it 
within a black box that is independent of the specific host/platform interface being used 
to control it, Connects the host/platform to it through a call-level API, and utilizes this 
API as a way to connect to automated test drivers.  What are some of the beneficial side-
effects of this approach? 
 

1. Flexibility – I define flexibility as “Ease of migration of the product to newer 
technology as it becomes available.”  This approach provides a certain amount of 
isolation for the core functionality from its host environment.  In the example 
described in the previous section, for instance, I could implement the front end 
with Visual Basic, or X-Windows, or Java (using JNI), without changing the core 
functionality at all (I might have to re-compile it).  This means I can port it to 
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Linux, VMS, or the MacIntosh, among others, by replacing only the front end. 
 

2. Adaptability – I define adaptability as “containing design features that are 
necessary to support tailoring the product to uses other than those of the original 
application.”  I can embed this application within a larger application (for 
example, if I wanted to build my own version of Quicken).  I can add software to 
turn it in to a stand-alone server that is accessed over a network.  I can make it in 
to a shared library (operating system permitting) that allows its functionality to be 
accessed by other applications running in the host environment. 
 

3. Cost – I can create scaled-down versions of the application by limiting the 
allowable operations at the API (thereby providing an opportunity to sell low-end 
versions of the application at reduced cost, which could expand the market for the 
application).  Additionally, the use of automated test drivers can greatly facilitate 
debugging activities, ultimately leading to reduced development and maintenance 
costs. 

 
Of course, the main benefit of this approach is that it can dramatically improve the ability 
to test the application with automated test tools.  This, in turn, leads to improved stability 
of the product (assuming you actually do stability testing), which produces the potential 
for greater customer and user acceptance. 
 
 

Conclusion 
Thorough testing is a fundamental part of the development process.  It is one of the 
feedback paths that drive changes in system requirements, changes in design and changes 
in implementation.  It’s an essential element of a product’s lifecycle.  Every product that 
is developed and fielded is ultimately tested, either by the developer or by the developer’s 
customers.  And if your customer tests your product and finds it lacking, you might not 
get paid at all. 
 
Nevertheless, it has been a constant source of amazement to me over the years that 
otherwise intelligent people seem to consider testing as an “add-on” activity which 
ultimately gets cut back to reduce costs or meet delivery schedules.  This same attitude 
causes these people to ignore the need to design products in such a way that they can be 
easily tested.  They say things like, “We can’t afford it”, or, “It’s not in the spec” or, “We 
aren’t building a Cadillac!” 
 
“Pay me now or pay me later!” – It doesn’t really matter whether you cut your testing 
program short to meet schedule or budget commitments.  It doesn’t really matter that you 
may be able to pass the costs of fixing your product’s deficiencies on to your customers.  
Sooner or later, you’re going to have to diagnose and fix those deficiencies.  If you 
haven’t designed the product in such a way as to facilitate this, it will simply take longer 
and cost more, and ultimately you will end up adding on features to your product 
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anyway, in order to do diagnostic testing.  The end result of this kind of design cycle is 
never as satisfactory as doing the job right on the first pass. 
 
Furthermore, your customers’ satisfaction is inversely related to how much it costs them 
and how long they have to wait for you to fix the problems with your product that are 
depriving them of the full benefits for which they are paying.  And unhappy customers 
can have a nasty way of paying you back. 
 
As was discussed in this paper, designing software for testability requires careful thought.  
It requires the application of some basic architectural principles in a way that is 
complementary to other design objectives.  It does not require extra software to be 
developed.  It does require that the software that is developed be organized in a certain 
way.  The result is not only a product that is testable, but also a product that is flexible 
and adaptable.  The result is a product that is more stable and which has lower 
maintenance costs. The result is a better product with a lower bottom-line cost. 
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