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Introduction 
This paper is intended to document an orderly approach to diagnosing performance and 
stability problems in applications through the use of using load testing.  It includes a set 
of diagnostic flowcharts, similar to those used in medicine and industry.  The rationale 
behind each of the flowcharts is discussed in subsequent sections.  Each flowchart 
includes a reference to its corresponding section. 
 
Diagnosing performance problems is typically 3 parts pattern recognition and 1 part 
intuition based on experience and understanding of how applications are typically 
implemented.  These flowcharts should therefore be used with the understanding that 
new and unique situations will be encountered from time to time that aren’t covered by 
these flowcharts.  
 
All of the flowcharts should be used when evaluating the results of a load test. 
 
These flowcharts are intended for diagnosing applications hosted on MS Windows-based 
systems only. 
 

Prerequisites 
In order to use the flowcharts, it is necessary to collect the data. 
 
Throughput data is obtained from the load test tool for load tests, and from web logs for 
operational systems, assuming that the bytes sent, bytes received and time-taken data 
elements logging elements have been enabled. 
 
For Windows-based applications, the following Perfmon counters should be collected at a 
minimum: 
 

• Processor / % CPU Time 
• Memory / Available Mbytes 
• Physical Disk / % Disk Idle 
• Processor / Interrupts/sec 
• System / System Calls/sec 
• System / Context Switches/sec 
• System / Threads 
• System / Processor Queue Length 
• Network Interface / Bytes Total/sec 

 
‘Network Interface / Bytes Total/sec’ must be added manually for each server because 
the name of the interface card is part of the counter name, and can differ from machine to 
machine. 
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Additionally, ‘Web Service / Total Method Requests’ should be added where diagnosing 
load-balancing problems is important (this is a cumulative counter).  The results for all 
IIS servers for this counter should be nearly identical in a properly load-balanced 
application. 
 
For .NET applications, the following counters should be added for diagnosing garbage 
collection issues: 
 

• .NET CLR Memory / # Gen 0 Collections 
• .NET CLR Memory / # Gen 1 Collections 
• .NET CLR Memory / # Gen 2 Collections 
• .NET CLR Memory / % Time in GC 

 
Additionally, if it is suspected that the application is making explicit calls to initiate 
garbage collections – normally a bad practice – then the ‘.NET CLR Memory / # Induced 
GC’ counter can be added (this isn’t covered in the flowcharts, but if this counter is 
anything other than  zero, then this is an application design issue). 
 
For ASP.NET applications, the following counter can be added to the IIS Server(s) to 
help diagnose saturation: 
 

• ASP.NET / Requests Queued 
 
This counter is not discussed in the flowcharts, but if it is consistently greater than zero, it 
indicates that the application is nearing saturation. 
 

References for Interpreting Perfmon Counters 
Discussion of Perfmon counter interpretation can be found in: 
 

• “Improving .NET Performance and Scalability.pdf,” Meier, Vasireddy, Babbar 
and Mackman, Microsoft 2004 
 

• http://msdn2.microsoft.com/en-gb/library/ms998583.aspx 
 

• http://www.microsoft.com/technet/prodtechnol/Windows2000Pro/reskit/part6/pro
ch27.mspx 
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The Flowcharts  
 

Start

Response time 
degradation at higher 

loads?

Application is 
saturated

Throughput 
degradation at 
higher loads?

Throughput 
degradation at 
higher loads?

Yes

Yes

No No

No

Yes

Inconsistent 
results –

Re-do test

Application is not 
Saturated

Is avg.
processor queue

length > 2 
for physical

host?

Is avg.
CPU > 85%Yes

CPU is the 
bottleneck deviceYes

No

Is avg.
network throughput

< 80% of
bandwidth?

No Yes

Is % disk
Idle time
< 80%? Yes

Is avg.
memory avail.

< 20% of
Total?

Memory is the
bottleneck deviceYes

Go to software 
aging flowchart

Software limitation Go to thrashing 
flowchart

Is DB server
CPU >> than
App server

CPU?

Go to thrashing 
flowchartNo

Is app.
server using
all data from
DB server?

SELECT *
with insufficinetly
limiting WHERE

clause
No

App/DB design
issues

Yes

Application Saturation Flowchart

Host is
I/O - boundYes

No

No

No

See, “Diagnosing Application Saturation”

*1.1

*1.2

  



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 6 of 32 

Start

IIS,
SQL Server

and/or
Exchange server

on same
host?

Yes

No

Thrashing Flowchart

Application is
mis-configured

Avg.
Context

switches/sec/
processing unit

> 15,000?

Avg.
hardware

interrupts/sec
> 5,000? Yes

Interface device
is mis-configured

or defective

Yes

Avg.
system

calls/sec
> 20,000?

No

Yes

Large
number of
processes/
Threads?

Application is
Spawning too 

many processes/
threads

Yes
App. design

issues

Excessive
time spent
in garbage
collection?

Memory shortage

Go to software
aging flowchart

Yes

No

No thrashing

No

No

No

See, “Diagnosing Thrashing in Applications"

*2.1

*2.2

 



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 7 of 32 

Start

Does
rebooting the
host free up
significant
resources?

Yes

No

Software Aging Flowchart

No aging problems

Software aging
problem

Use Task Manager
to identify

resource leaks

Fix leaks or 
schedule software

refreshes

Start

Is
Gen #0 : Gen #1 : 
Gen #2 GC ratio

100 : 10 : 1?

Yes

No

No GC problems

Does ratio
Return to 100 : 10 : 1

On reboot?

Go to software
Aging flowchart

Excessive use
of ‘finalize()’

method

Garbage Collection Flowchart
See, “Diagnosing Garbage Collection Issues”

See, “Diagnosing Software Aging”

*3.1

 



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 8 of 32 

Start

Are there a lot of 
random errors, such as 

timeouts, observed 
during testing?

Yes

No

Stability Errors Flowchart

Load-induced
stability errors

No stability
problems

Is there
Evidence of

‘Poisson
Clumping’?

Yes

Does error
rate scale

linearly with
load?

No

No

Non-Load-induced
stability errors

Yes

See, “Evaluating Stability Errors”

*5.1

*5.2

 



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 9 of 32 

Diagnosing Application Saturation 
The purpose of load testing is to assess the behavior of an application under load.  
Specifically, one objective is to identify the capacity of the application and any 
bottlenecks that limit performance, as well as to determine whether or not the 
application meets its service level requirements for a particular type of load. 
 
This section discusses how to assess maximum capacity and identify bottleneck 
devices using load testing and Perfmon counters. 
 

What Is Saturation? 
Basically, as load increases, throughput increases, until maximum resource 
utilization on the bottleneck device is reached.  At this point, maximum possible 
throughput is reached.  Saturation occurs once maximum throughput is reached, and 
at this point, queuing occurs.   Queuing typically manifests itself by degradation in 
response times. 
 
This phenomenon is described by Little’s Law: 
 
 Q = X * R 
 
Where Q is equal to the number of transactions/bytes/bits in the system, X is the 
throughput of the system, and R is the response time.  As Q increases, X increases (R also 
increases slightly, because there is always some level of contention at the component 
level).  At some point, X reaches Xmax, the maximum throughput of the system.  At this 
point, as Q continues to increase, the response time R increases in proportion.  This is 
illustrated in the following graphs (taken from “The Art of Computer Systems 
Performance Analysis”, by Raj Jain, 1991): 
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In this diagram, N* is the number of users (an expression of load) at which the application 
begins to go into saturation.  It is also sometimes referred to as the point of optimal 
throughput.  D is the service demand, which will be discussed below, Dmax is the 
maximum service demand of all of the devices in the system, again discussed below, and 
Z is user ‘think time’ (not important to this discussion). 
 
In LoadRunner, for example, we typically see saturation as a degradation in response 
times with increased load, defined as the number of simultaneous Vusers.  For example: 
 

 
 
This chart was taken from a recent load test.  It is important to always generate this chart 
in LoadRunner in order to diagnose whether or not the application is saturating. 
 
Queuing doesn’t always manifest itself as a degradation in response times, however.  In 
the same application from which the above chart was taken, a different configuration was 
tested using a message queuing component (Microsoft MSMQ) to de-couple the user 
presentation layer from the back-end processing by queuing user transaction requests and 
responding to the user immediately.  The back-end database would then pull transaction 
requests off of the queue and process them as quickly as it could.  The chart below 
illustrates this: 
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The purple line shows the number of Vusers.  The yellow line shows the number of 
transactions in the MSMQ queue awaiting execution.  The gray line shows another 
processing component of MSMQ.  It is interesting to note that queuing occurs at the same 
level of load in both configurations, i.e., 47 simultaneous Vusers.  At this point, the 
application is saturated. 
 

Identifying the Bottleneck Device and Predicting Xmax 
Another important concept is the Utilization Law: 
 
 Ui = X * Di 
 
Where Ui is the percentage of utilization of a device in the application, X is the 
application throughput, and Di is the service demand of the application device.  The 
maximum throughput of an application Xmax is limited by the maximum service demand 
of all of the devices in the application. 
 
Typical application devices include:  CPU, memory, disk and network interfaces.  We get 
application throughput from LoadRunner.  We get device utilization from Perfmon 
counters.  For example, in a load test where LoadRunner reports 200 kb/sec average 
throughput: 
 
 CPUavg =  80% 
 Memoryavg = 30% 
 Diskavg = 8% 
 Network I/Oavg = 40% 
 
We use the average values rather than the maximum for two reasons.  First, if we used 
maximum values, our results would be based on outliers.  By using average values, our 



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 12 of 32 

calculations are based on a large number of samples over time.  Second, LoadRunner, for 
example, gives us actual average throughput, but only give ‘graph’ maximum throughput.  
The averages should be filtered from the point where the load is first applied until the 
point where the load is removed. 
 
In this example, the service demands are: 
 

Dcpu =   0.8 / 200 kb/sec  = 0.004 sec/kb 
Dmemory =  0.3 / 200 kb/sec  = 0.0015 sec/kb 
Ddisk =   0.08 / 200 kb/sec  = 0.0004 sec/kb 
Dnetwork I/O =  0.4 / 200 kb/sec  = 0.002 sec/kb 

 
In this case, Dmax corresponds to the CPU.  So, the CPU is the bottleneck device.  We can 
use this to predict the maximum throughput of the application by setting the CPU 
utilization to 100% and dividing by Dcpu.  In other words, for this example: 
 
 Xmax = 1 / Dcpu = 250 kb/sec 
 
In order to increase the capacity of this application, it would first be necessary to increase 
CPU capacity.  Increasing memory, network capacity or disk capacity would have little 
or no effect on performance until after CPU capacity has been increased sufficiently. 
 
In the following application, these charts were obtained: 
 

 
 



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 13 of 32 

 
 
The first chart shows the application going into saturation at a load of about 30 Vusers.  
The second chart shows CPU utilization.  The red line is the CPU utilization of the 
application server and the green line is the number of Vusers.  This chart shows the CPU 
utilization on the application server going to 100% at a load of 30 Vusers.  As an 
additional check, we can look at the processor queue length.  Microsoft indicates that a 
processor queue length consistently greater than 2 indicates a bottleneck (the acceptable 
queue length is somewhat higher for virtual machines, such as those hosted under 
VMWare).  If we see that the processor queue length is consistently high, we can confirm 
that the application is in saturation and insufficient CPU is the cause. 
 
In this next example, the following LoadRunner charts were obtained: 
 

 
 
Color Scale Measurement Min. Ave. Max. SD 

 1 Memory (Available MBytes):Server1 336 361.55 463 9.241 

 1 Memory (Available MBytes): Server2 534 596.883 659 10.465 

 1 Memory (Available MBytes): Server3 2 143.297 732 244.255 

 1 Run N/A N/A N/A N/A 
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Color Scale Measurement Min. Ave. Max. SD 

 1 Processor(_Total) (% Processor Time): Server1 0.0 2.592 100 8.636 

 1 Processor(_Total) (% Processor Time): Server2 0.0 1.545 100 7.865 

 1 Processor(_Total) (% Processor Time): Server3 0.0 66.161 100 42.288 

 1 Run N/A N/A N/A N/A 

 

 
 
 
In this particular example, the available memory on the application server was extremely 
low, reaching a minimum of 2 MB available out of a total of 1 GB.  The CPU utilization 
on the application server was also extremely high.  Once again, we can see that the 
application is starting to go into saturation at about 30 Vusers. 
 
In this case, the memory is the bottleneck device, followed closely by the CPU.  When 
memory was increased from 1 GB to 6 GB, the CPU became the bottleneck device (see 
the previous example).  As a well-known expert in performance analysis observed, “You 
can never really eliminate a bottleneck device, you can only shuffle the deck.” 
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Diagnosing Thrashing in Applications 
Occasionally, we see applications where that have poor performance due to mis-
configuration of the hardware, or problems in the design or configuration of the 
software that result in ‘thrashing’.  This section provides a description of how to go 
about diagnosing these issues. 
 

Context Switches/Sec. 
The primary indicator of thrashing is generally the Perfmon counter, “Context 
Switches/Sec.”  It is important to understand this counter is an aggregate for an 
entire host.  For example, a DL-580 has 4 dual-core CPUs, but there is only one of 
these counters for the entire machine. 
 
Microsoft’s guidance for Windows Server 2003 states that more than 15,000 context 
switches/sec. per processing unit indicates a problem.  So, for the example of the 
DL-580, there are 8 processing units, and the maximum acceptable number of 
context switches/sec. would be 120,000. 
 
Microsoft guidance also states that less than 5,000 context switches/sec. per 
processing unit is “not worth worrying about.”  So, less than 40,000 context 
switches/sec. for the DL-580 would be perfectly normal. 
 
Generally, system administrators set their monitoring alarm levels at around 14,000 
context switches/sec. 
 
So, what does a high rate of context switching mean?  Well, it can mean any number 
of things.  For example, if accompanied by a high rate of interrupts, it typically 
indicates a problem with an interface adaptor, such as being configured in PIO mode 
when it should be configured in a DMA mode. 
 
No specific rate for interrupts is usually given.  Instead, most analysts look for 
sudden changes in the rate.  However, this type of analysis is typically used in an 
operational monitoring situation. 
 
For our purposes, we would like to be able to evaluate the interrupt rate in the 
context of a load test.  One Intel article: 
 

http://www.intel.com/cd/ids/developer/asmo-na/eng/76915.htm?page=7 
 
suggests that more than 5,000 interrupts/sec. is high.  A quick check of old load test 
reports did not show any cases where this occurred. 
 
If the number of system calls/sec. is high, this typically indicates a software 
bottleneck.  The same Intel article suggests that more than 20,000 system calls/sec. 
indicates a problem.  When this situation occurs, we need to look at the number of 
processes, the number of threads and the amount of memory available, particularly 
when we are dealing with a .NET application. 
 
A high number of processes or threads accompanied by a high rate of context 
switches and a high rate of system calls indicates that there are too many processes 
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or too many threads active simultaneously, and the application is ‘thrashing’ itself, 
i.e., the application has too much parallelism and it is spending an excessive amount 
of time switching from one thread to the next. 
 
In .NET applications, when we see a high rate of context switches accompanied by a 
high rate of system calls and low available memory, we next want to look at the 
number of Gen #0, Gen #1 and Gen #2 garbage collections.  Microsoft guidance 
states that Gen #1 garbage collections should occur at about 10% of the rate of Gen 
#0 garbage collections, and Gen #2 garbage collections should occur at about 10% 
of the rate of Gen #1 garbage collections. 
 
If there are an excessive number of Gen #1 and Gen #2 garbage collections relative 
to Gen #0 garbage collections, this suggests that the application may be thrashing 
itself due to insufficient memory causing an excessive amount of high generation 
garbage collections in order to scrounge up enough memory to satisfy the next 
operation. 
 
The cause of this kind of situation may be due to insufficient physical memory, or 
due to a software aging problem, i.e., a memory leak.  If we re-boot the machine 
and the problem goes away, this indicates a memory leak.  If the problem doesn’t go 
away, then it’s time to add more memory. 
 

An Example of a Possible Software Bottleneck 
The following graphs were taken from a load test that was conducted over a year 
ago: 
 
 

 
 
Color Measurement Graph's Min. Graph's Ave. Graph's Max. Graph's Median Graph's SD 

 System (Context Switches/sec):Server1 2779.679 5598.889 7632.631 5870.708 1337.386 

 System (Context Switches/sec): Server2 3267.77 6938.823 10109.07 6623.861 1559.394 

 System (Context Switches/sec): WebServer1 2970.588 45995.765 73156.652 56599.767 22770.71 
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 System (Context Switches/sec): WebServer2 4714.073 35106.737 64624.73 39466.593 14382.049 

 System (Context Switches/sec): Server3 1070.579 1253.792 1541.155 1204.144 144.88 

 System (Context Switches/sec): Server1 835.483 988.731 1409.286 872.839 161.686 

 Run 0.0 1007.857 1366 1329 467.343 

 
 

 
 
Color Measurement Graph's Min. Graph's Ave. Graph's Max. Graph's Median Graph's SD 

 
System (System Calls/sec): 

Server1 
4387.29 10704.997 15673.177 11356.861 3206.966 

 
System (System Calls/sec): 

Server2 
4978.951 11667.426 17446.188 11060.506 2941.709 

 
System (System Calls/sec): 

WebServer1 
4026.311 73531.874 107128.059 92788.933 34106.849 

 
System (System Calls/sec): 

WebServer2 
9106.658 59907.732 100722.501 66228.158 22376.502 

 
System (System Calls/sec): 

Server3 
2087.107 3135.356 4705.936 2697.711 833.129 

 
System (System Calls/sec): 

Server4 
1327.757 2245.728 5121.947 1534.655 971.676 

 Run 0.0 1007.857 1366 1329 467.343 

 
 
In this example, the two web servers, usatrame5151 and usatrame5152 show a 
moderately high rate of context switches (within the Microsoft guidelines), and a very 
high rate of system calls. 
 
However, available memory remained adequate throughout the test (minimum of 1.6 
GB), CPU utilization was moderately high (average of 60% to 67%) and reached a 
maximum of only 86%.  Interrupts/sec. was low.  Processor queue length was within 
acceptable limits (1.3 to 1.9 on average and reaching a maximum of 3). 
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All of this combined indicates that there was no bottleneck and that the application was 
nearing its peak capacity at the load of 1,300 simultaneous users. 
 
This is the closest example of a potential software bottleneck that was available, but close 
analysis revealed that it wasn’t a bottleneck after all. 
 

An Example of Thrashing Caused by a Memory Leak 
This example shows a situation where a memory leak occurred on the IIS/Application 
server, causing the application to thrash.  The application reaches a point where it is 
spending nearly 50% of its time in garbage collection trying to obtain enough memory to 
complete its tasks: 
 

The application appeared to be reaching its size limit for the managed heap on the 
IIS machine.  At this point, a Gen #2 garbage collection was forced, which caused 
the entire application to suspend until the garbage collection completed.  The 
processor queue on the IIS machine backed up during the GC operation, and then 
released, flooding the database machine.  The process continued to repeat itself 
for about 15 minutes after the load is removed and the queued transactions were 
worked off.  At this point, the application recovered. 
 
The time spent in global cache graph shows major cache activity at the point at 
which the heaps reach their maximum size. 

 

 
 
Color Graph Scale Measurement Min. Ave. Max. SD Count 

 Windows Resources 1 .NET CLR Memory(_Global_) (% Time 
in GC):Server1 0.046 12.339 49.995 19.161 5712 

 Running Vusers 1 Run N/A N/A N/A N/A N/A 



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 19 of 32 

 
 

The garbage collection graph shows the number of Gen #2 garbage collections 
rising rapidly.  It also show that the time spent in garbage collection by the IIS 
machine reaches about 50% and remains there until about 15 minutes after the 
scenario ends. 

 
 

 
 
Color Graph Scale Measurement Min. Ave. Max. SD 

 Windows Resources 0.01 .NET CLR Memory(_Global_) (# Gen 2 
Collections): Server1 4592 6314.842 6642 531.444 

 Windows Resources 1 .NET CLR Memory(_Global_) (% Time in GC): 
Server1 0.046 12.339 49.995 19.161 

 Running Vusers 1 Run N/A N/A N/A N/A 

 
 

The %CPU utilization graph shows that the IIS machine reaches a level of 25% to 
30% and remains there until about 15 minutes after the scenario ends.  The CPU 
utilization for the database server shows periodic spikes that are indicative of the 
back-end flooding that occurs when a Gen #2 garbage collection completes on the 
IIS machine and the application is re-started.  The database server does not appear 
to be heavily loaded, except for these periods of back-end flooding.  The IIS 
machine does not appear to be CPU bound, since the CPU utilization never gets 
higher than about 40%. 

 
Once the server was re-booted, the thrashing problem disappeared. 
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IIS and SQL Server on the Same Machine 
Generally, it’s a bad idea to host IIS or SQL Server or Exchange on the same machine.  
The reason is that these applications can consume lots of memory.  SQL Server, 
Exchange, and IIS by default try to allocate all available physical memory for itself, 
while IIS allows its .NET heap to grow until it runs out of memory. The result is that both 
servers can end up memory starved. Thrashing occurs as processes for each server 
attempt to obtain enough memory to complete their tasks.  If these applications must be 
run on the same hardware it is best to hardcode a SQL max server memory parameter so 
it does not become overly aggressive with memory needed for the other applications. 
 
This kind of situation can be spotted by examining the configuration of the application. 



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 21 of 32 

Diagnosing Software Aging 
As software continues to run over a period of time, it tends to accumulate various types 
of errors, eventually causing degraded performance or complete failure.  Types of errors 
can include:  memory leaks, memory bloating, un-released file or database locks, other 
types of resource leaks, such as I/O handles, data corruption, un-terminated threads and 
processes, fragmentation of storage, and round-off errors. 
 
This phenomenon is known as “software aging.”  The aging can occur either in the 
application itself, a host server, such as IIS, or the operating system. 
 
The problem can be diagnosed by restarting either the application or by rebooting.  If the 
degraded performance disappears after either one of these actions is performed, this 
indicates a software aging issue.  The next time this situation occurs, Task Manager can 
be used to look for specific processes that show signs of memory leaks, etc. 
 
The average rate at which the application enters the degraded mode can be measured.  It 
is important to note that this rate may or may not be dependent on the load that is applied.  
This can be determined through load testing, by running tests with different levels of load 
and plotting the results, or from operational data by calculating the average load from the 
time of the last restart until the application crashed or entered the degraded mode, and 
plotting the results.  The slope of the line gives the load-dependent portion of the aging 
rate. 
 
Once the aging rate is known, it is then possible to set up a schedule for restarting the 
aged components or rebooting. 
 
A more thorough treatment of this topic can be found in, “Capacity Planning for Web 
Services,” Menasce and Almeida, Prentice-Hall PTR, 2002, section 11.8. 
 
 



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 22 of 32 

Diagnosing Garbage Collection Issues 
During load testing, we occasionally observe spikes in the in all of the performance 
counters simultaneously across all of the application’s servers, accompanied by 
temporary increases in response time.  This document attempts to explain what causes 
this. 
 
The following guidelines should prove useful.  When we see: 
 

• An occasional large spike in response times accompanied by a corresponding 
large spike in resource utilization (Perfmon counters), we should suspect that a 
Gen #2 garbage collection is occurring that is temporarily suspending the entire 
application, as described below. 
 

• Gen #0, Gen #1 and Gen #2 garbage collections with a ratio of significantly less 
than 10:1 between lower and higher generations, it can be the result of two 
different conditions: 
 

o If the server is lightly loaded, it indicates excessive use of the ‘finalize()’ 
method, described below. 
 

o If the server is heavily loaded, time spent in garbage collection as well as 
the amount of memory available may indicate insufficient memory: 
 

  If the condition disappears after rebooting the server, and the 
ratios between garbage collections return to 10:1, this indicates a 
software aging problem, specifically, a memory leak.  This is 
discussed in, “Diagnosing Thrashing in Applications.” 
 

 If a re-boot doesn’t correct the problem, try testing the application 
with a light load.  If the ratio is still wrong, it indicates excessive 
use of the ‘finalize()’ method. 
 

 If a re-boot doesn’t fix the problem, but the ratio returns to 10:1 
under light load, it indicates that memory is a bottleneck on the 
server and needs to be increased. 

 
The following sections provide detailed explanations of the garbage collection spike and 
the reason that overuse of the ‘finalize()’ method causes performance problems. 
 

The Garbage Collection Spike 
The following graph shows average response times for a large number of different types 
of transaction types (represented by the differently colored lines) occurring 
simultaneously: 
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Note the spikes occurring at 1:12 hours and 2:17 hours.  Now look at the graph of the 
combined Perfmon counters, with spikes occurring simultaneously in all counters at the 
same times. 
 
 

 
 
Please excuse the ‘busy’ nature of the graphs.  The individual lines aren’t important here, 
only the pattern that they form. 
 
This graph shows the time spent in garbage collection on the web servers – the only 
servers that actually perform garbage collection, as one of the functions of the managed 
heap: 
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We see a substantial spike simultaneously occurring at about 1:12 into the test on both 
servers and a series of smaller spikes occurring simultaneously on both servers in the 
2:17 to 2:30 time frame. 
 
The spikes at 1:12 and 2:17 are reflected in the response times, and the spikes after the 
2:17 spike are also reflected in the Perfmon counters. 
 
This graph shows queuing of ASP.NET requests on the web servers: 
 

 
 
 
And this graph shows a spike in the processor queue length in all six servers at the time 
of the first spike: 
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Color Scale Measurement Min. Ave. Max. 

 100 System (Processor Queue Length):Web Server 1 0.0 0.161 82 

 100 System (Processor Queue Length):Web Server 2 0.0 0.179 85 

 100 System (Processor Queue Length):App Server 1 0.0 0.05 49 

 100 System (Processor Queue Length):App Server 2 0.0 0.08 61 

 100 System (Processor Queue Length):DB Server 0.0 0.026 1 

 100 System (Processor Queue Length):File Server 0.0 0.019 1 

 1 Run N/A N/A N/A 

 
 
In the above graph, the web servers are Web Server 1 and Web Server 2, the application 
servers are App Server 1 and App Server 2, and the database servers are DB Server and 
File Server.  Notice how the maximum queue length decreases as we get farther from the 
web servers.  File Server is used for storing file images in SQL Server, and is used less 
than DB Server.  
 
The following graph shows the details of what is happening on the web servers.  First the 
processor queue length begins to increase as the entire application is suspended for a Gen 
#2 garbage collection, and transaction requests continue to arrive from the clients.  Next, 
the garbage collection activity itself is performed.  Finally, the application is restarted and 
a flood of queued ASP.NET transaction requests are processed as rapidly as possible, 
indicated by the system calls/sec counter. 
 



 
Copyright © 2007, Alfred J. Barchi, Inc. All rights reserved. 
 

Page 26 of 32 

 
 
 
Color Scale Measurement Min. Ave. Max. 

 1 .NET CLR Memory(_Global_) (# Gen 2 Collections):Web Server 1 149 632.344 1151 

 10 .NET CLR Memory(_Global_) (% Time in GC): Web Server 1 0.0 3.145 87.7 

 1 Processor(_Total) (% Processor Time): Web Server 1 0.0 3.239 100 

 10 System (Processor Queue Length): Web Server 1 0.0 0.161 82 

 0.001 System (System Calls/sec): Web Server 1 1650.099 5502.171 636656.415 

 

What is Happening 
What is happening is that this application is making excessive use of the ‘finalize()’ 
statement, forcing de-referenced objects to go through two generations of garbage 
collection rather than one.  As long as there is adequate memory allocated to the 
application’s heap, there is no impact.  However, some objects are more persistent than 
others, and would naturally survive to a Gen #1 garbage collection anyway.  When they 
are forced to go through two generations of garbage collection, they eventually end up as 
Gen #2 de-referenced objects. 
 
Once the point is reached where Gen #1 collection cannot free up enough memory to 
satisfy the needs of the next transaction request, a Gen #2 garbage collection.  Since a 
Gen #2 collection compresses the entire heap, the entire application must be suspended 
before the Gen #2 garbage collection can be performed. 
 
During the period when the application is suspended, the transaction request queue builds 
up as new transactions arrive.  Once the garbage collection activity is completed, the 
server processes the queued transaction requests as quickly as possible, causing a 
cascading effect as the sudden burst of high activity ripples out through the application 
servers and on to the database servers. 
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The spikes that occurred after the 2:17 were reaping operations.  The test had already 
completed, and the application reaped its unused but still allocated objects after an 
inactivity timeout.  There is no spike in response time after the 2:17 spike because the 
application is idle at this point. 
 
There is no spike in processor queue length at 2:17 because the number of transactions 
backed up is smaller, no new transaction requests are being received, and the resulting 
load is insufficient to cause the processors to overload.  The queuing effect is evident on 
the response times, however.  There is no backup in the ASP.NET request queue, and no 
corresponding backend flood when the reaping garbage collections complete.  In this 
example, only the initial spike at 1:12 and the spike at 2:17 had any impact on 
performance. 
 
It should also be noted that the major spikes at 1:12 and 2:17 occurred when both web 
servers went into Gen #2 garbage collection simultaneously.  This is an indicator that the 
application was properly load-balanced.  When only one server goes into Gen #2 garbage 
collection, the other server continues to process transaction requests and the effect is far 
less pronounced. 
 

Diagnosing Excessive Use of the ‘finalize()’ Method 
Microsoft literature advises that Gen #1 garbage collections should normally occur at 
about 10% of the rate of Gen #0 garbage collections, and Gen #2 garbage collections 
should occur at about 10% of Gen #1 garbage collections. 
 
The number of garbage collections for the example application was monitored, and the 
following table shows the results: 
 
Color Scale Measurement Total 

 0.01 .NET CLR Memory(_Global_) (# Gen 0 Collections): Web Server 1 4798 

 0.01 .NET CLR Memory(_Global_) (# Gen 0 Collections): Web Server 2 5349 

 0.01 .NET CLR Memory(_Global_) (# Gen 1 Collections): Web Server 1 2027 

 0.01 .NET CLR Memory(_Global_) (# Gen 1 Collections): Web Server 2 2160 

 0.01 .NET CLR Memory(_Global_) (# Gen 2 Collections): Web Server 1 1151 

 0.01 .NET CLR Memory(_Global_) (# Gen 2 Collections): Web Server 2 1186 

 
 
The ratio is clearly way off from Microsoft’s recommendation.  As stated above, this is 
caused by excessive use of the ‘finalize()’ method, which causes a de-referenced object to 
be promoted to a higher generation before it is collected. 
 
When questioned about excessive use of the ‘finalize()’ method in the example 
application, the developers acknowledged that they were using it for nearly every object. 
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What happens is that when an object with a ‘finalize()’ method is de-referenced, it is 
placed on the ‘Finalize’ queue for that generation, and a reference to it is placed on the 
‘Freachable’ queue, so that it won’t be removed by the garbage collector before the 
‘finalize()’ method is executed. 
 
The ‘finalize()’ method is executed the next time a garbage collection for that generation 
is performed.  Since the object is still reachable because it is on the ‘Freachable’ queue, 
the garbage collector promotes it to the next generation.  The object is then removed from 
the ‘Freachable’ queue and ultimately removed from the heap. 
 
The reason for this complexity is that the garbage collection activity and the execution of 
‘finalize()’ methods are performed by separate, asynchronous processes, and there is no 
way to know which action is performed first. 
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Evaluating Stability Errors 
Many times, when performing load tests, random errors are encountered of the type, 
“Internal Server Error” with type code 500.  This is the generic, “something went 
wrong on the servers” error, and doesn’t reveal much about the cause of the error.  
It is important to provide some insight into the potential causes of these errors so 
that the development team can diagnose and correct them.   
 
If the errors appear to be random in nature, with no apparent pattern, then they can 
be classified as stability errors.  Stability errors generally fall into five categories: 
 

• Race conditions 
• Boundary/limit problems (e.g., buffer overruns) 
• Resource leaks 
• Deadlocks 
• Timeouts (but not timeouts caused by deadlocks) 

 
It must be remembered that the load test acts as an error detector.  When random 
stability errors such as race conditions or deadlocks occur, increasing the load 
increases the probability of detecting these errors – in proportion to the increase in 
the load. 
 
Resource leaks tend to manifest themselves as slow buildups over time in such 
things as memory utilized or open file handles, etc.  This type of stability problem 
tends to manifest itself as a catastrophic failure, rather than as randomly occurring 
errors. 
 
Boundary/limit errors and timeouts (not caused by deadlocks) tend to be caused by 
higher loads, so with these types of errors, the load test not only acts as an error 
detector but as an error inducer.  These differences aid in diagnosing the cause of 
the errors. 
 
The question arises, “Are the errors caused by the increased load, or are they simply 
randomly occurring stability errors caused by such things as race conditions, which 
are merely detected with greater frequency at higher loads?” 
 
Diagnosing performance problems is typically 3 parts pattern recognition and 1 part 
intuition based on experience and understanding of how applications are typically 
implemented.  This paper provides some insight into the pattern recognition part of 
the exercise, with respect to the types of things that can cause application thrashing 
and how to recognize these situations when they occur. 
 
For this reason, the following guidelines should prove useful: 
 

• Evidence of ‘”Poisson Clumping” of errors under heavy loads, as described 
below, is a indication that the errors are load-induced. 
 

• Vary the test load by +/- 10%.  If the error rate scales linearly, this indicates 
that the errors are not load-induced.  If the error rate accelerates with 
increased load, this indicates that the errors are load-induced. 

 
The following sections explain all of this in detail. 
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Diagnosing Load-Induced Errors 
There are two ways to diagnose load-induced errors.  The first way is to vary the load by 
+10% and -10% around the point where the errors were observed.  If the number of errors 
appears to increase linearly with increased load, then the errors are most likely caused by 
race conditions or deadlocks. 
 
If, on the other hand, the slope of the errors vs. load line increases significantly when 
going from the reference load to reference plus 10%, as opposed to the slope of the errors 
vs. load line when going from the reference load to reference minus 10%, this would 
indicate that the errors are load-induced.  This would place them in the category of either 
boundary/limit problems (e.g., buffer overruns) or timeouts not caused by random 
deadlocks. 
The second way to diagnose load-induced errors is to observe the pattern of the errors (if 
any).  As long as the load test is designed in such a way that the load generators behave 
like Poisson processes, i.e., the time between iterations is exponentially distributed, then 
it should be possible to observe a pattern in the errors known as “Poisson clumping.”  
This phenomenon is a characteristic of all queuing systems when they get overloaded, 
and is frequently observed in network appliances. 
 
With sufficiently high loads, the peaks in the error rate should correspond fairly closely 
with the peaks in the throughput, when these two values are plotted together.  The first 
graph below illustrates Poisson clumping observed in one of our load tests: 
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This next graph shows this same clumping plotted against throughput for the same load 
test: 
 

 
 
 
The reason that the peaks in the error rate correlate with peaks in the throughput is that up 
until a level of load is reached where significant queuing occurs, throughput increases 
with load. 
 
In the charts above, the errors didn’t start until 50 minutes into the test because the 
problem was related to the design of a third party application that was retrieving an 
excessive amount of data from the database for an intermediate processing step of each 
transaction.  The test was designed in such a way that new data was being added to the 
database throughout the duration of the test, and it took 50 minutes for the size of the 
database to increase to the point where the application could no longer handle the load. 
 
The reason for varying the load by only 10% around the reference load is to avoid raising 
the load to such a level that load-induced errors start occurring in addition to the errors 
that were already occurring. 
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Footnotes to the Flowcharts 
1.1 When an application saturates at higher loads, its response time degrades as more 
and more transaction requests are queued.  Simultaneously, application throughput 
reaches its maximum value.  When response time is plotted against load, or throughput is 
plotted against load, the resulting curves resemble ‘hockey sticks’ – hence their name.  
Response time can be plotted against load in LoadRunner with the ‘Response Time 
Under Load’ graph.  A more complete explanation, as well as examples of the ‘hockey 
stick curves’ are provided in, “Diagnosing Application Saturation.doc.” 
 
1.2 By much, much greater, we generally mean 5 or more times as great. 
 
2.1 A ‘large number of processes/threads’ is a subjective evaluation, and depends on 
the capacity of the host.  For a DL380, it might be 10,000 or more. 
 
2.2 This is a subjective evaluation, but significantly more than 2% can be considered 
to be an indication of problems. 
 
3.1 This is a subjective evaluation, but if more than half of the machine’s memory is 
freed up by a re-boot, it may indicate a software aging problem. 
 
5.1 This is a subjective evaluation, but there are two key points to observe.  First, the 
errors must be ‘random’, i.e., they don’t appear to be related in any way to any particular 
operation.  Second, ‘a lot’ would be interpreted as a significant portion of the total 
transactions being in error.  For example, if a test had a total of 30,000 transactions, 5,000 
errors would be a lot, 10 errors wouldn’t.  For anything in between, it’s up to the analyst 
to determine whether or not there is a serious enough problem to warrant further 
investigation. 
 
5.2 ‘Poisson Clumping’ is a characteristic type of error distribution common to any 
type of queuing system where the arrival rate of requests follows a Poisson distribution.  
Examples of such systems include network routers, IIS, application servers and database 
servers.  An entire application hosted on multiple servers is also a queuing system.  When 
errors are plotted against throughput in LoadRunner, using fine granularity, this will 
appear obvious.  An example of this is given in, “Evaluating Stability Errors with 
LoadRunner.doc.” 
 
 


