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Abstract 
The author recently had a conversation with a self-styled “system architect” about how to 
achieve stability in distributed systems and distributed applications.  The author asserted 
that in order to create a stable system, you have to do stability testing once it is built.  The 
system architect stated that stability testing is expensive, many software development 
houses lack the resources to do it properly, and it’s more efficient to do adequate 
modelling of the system before it is built.  The author certainly agrees with the idea that 
up-front modelling efforts are needed to avoid costly design errors. 
 
However, upon further discussion, it turned out that the system architect had the curious 
notion that modelling is not only necessary, but that it is sufficient to eliminate all 
stability problems in a system.  Everything in the author’s 30+ years of experience in 
building distributed systems and applications told him that this is simply wrong.  
Unfortunately, the author hadn’t thought much about why this idea is wrong, since the 
author had never encountered it before.  Since it appears that the system architect is not 
alone in his heresy, however, the author wrote this paper in reply.  It explains why 
modelling isn’t sufficient by itself, and discusses a strategy that does produce effective 
results. 
 

Models are only as good as the assumptions on which they are 
based. 
This may seem profoundly obvious.  But, in order for modelling to be sufficient in and of 
itself to provide system stability, the assumptions on which the model is based must all be 
completely accurate, and nothing significant may be overlooked. 
 
It should also seem obvious that a model is never as complete and detailed as the thing 
itself, or else it becomes the thing itself, or at least becomes as complex and costly to 
build as the thing itself.  In fact, the point of modelling is to produce a simplified 
representation of the thing to be developed, in order to allow it to be manipulated and 
design concepts validated at a fraction of the cost of building the actual system.  The idea 
is to achieve an optimal strategy where the cost savings of the design flaws detected and 
avoided through modelling outweighs the cost of the modelling activity itself. 
 
This concept seems to have been lost on those who used to advocate the use of such tools 
as “pseudo-code”, i.e., PDL (pseudo-design language) to model complex applications 
before actually building them.  An engineering process maven once showed the author a 
presentation he had made in which he asserted that the proper ratio of PDL to actual code 
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ought to be 10-to-1.  Certainly, if you can adequately represent your system with a model 
that is only 10% of the size and complexity of the actual system, this is a good thing, and 
a worthwhile up-front design exercise to avoid costly design errors.  The process maven 
was quite upset, however, when the author pointed out to him that in the example that the 
maven had used, the actual ratio was only 2-to-1. 
 
Nowadays, we have more sophisticated tools for doing modelling – visual tools, fourth 
generation languages (4GL’s), etc., which not only support modelling, but also provide 
for the automated generation of working code directly from the model.  But, while it is 
important to do high level modelling of transactions, data flows, the structure of data, 
objects and their interactions, etc., it is also important to recognize that the 50% to 90% 
of the thing itself that we leave out of the model isn’t just extraneous window dressing.  
And if we don’t model that 50% to 90%, then our model won’t catch any problems that 
occur in that 50% to 90%. 
 
Another thing to consider is that in some instances, such as the development of 
mathematical models, the model itself can become too complex to manipulate effectively.  
Many years ago, an initiative was started that was known as “provably correct software.”  
This approach attempts to mathematically model software and apply mathematical proofs 
to either discover errors or verify correctness. 
 
Early attempts to do this modeled individual computer operations mathematically.  
Examples that were cited in research papers were typically no more than 20 to 50 lines-
of-code long.  It was found to be impractical to apply this approach to a complex 
application consisting of several hundred thousand lines of code written in a high-level 
language. 
 
Later on came the “formal specification.”  The idea is that the specification of the product 
is expressed in an abstract, mathematical form, i.e., a formal specification, which is then 
tested for mathematical correctness.  There are two approaches to formal specifications:  
the property-based approach and the model-based approach. 
 
In the model-based approach, one uses the tools of set theory, function theory and logic 
to construct an abstract model of a system or application.  This model is high-level, 
idealized and free of implementation bias.  Special languages (similar in many ways to 
PDL) are used to construct this model, such as the “Z” specification Language or the 
VDM (Vienna Development method) specification language.  There are several tools that 
have been developed for building and testing Z specifications, e.g., CADIZ, FUZZ and 
ZED. 
 
Supposedly, IBM used the Z language to develop a formal specification for CICS.  
Whether this was done before or after CICS was implemented, whether it was done in 
lieu of or in addition to other types of specification, and to what extent it was useful in 
eliminating stability errors in CICS is unclear.  It’s also unclear whether this was a 
sincere attempt by IBM to minimize the cost of developing CICS, or whether it was part 
of a research project to explore alternative methodologies of software development. 
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No doubt there are tools of more recent vintage than Z specifications, such as UML or 
XML-based approaches.  But all such tools address the same problem; they would all 
share similar economics, and they would all, of necessity, use a fundamentally similar 
approach, i.e., they would all implement models that are high-level, idealized and free of 
implementation bias.  Perhaps this is what the system architect was thinking of in his 
discussion with the author. 
 
In any event, actual systems that have been implemented are not high-level, idealized and 
free of implementation bias.  Use of formal specifications does not eliminate the need for 
testing.  And, in fact, IBM allocates a considerable portion of their development budget 
to testing. 
  

Software is written by humans… 
And, to err is human.  Even automatic code generators are written by humans.  The code 
that is output is seldom as streamlined and efficient as it could be if it were written 
directly by human programmers since it is designed for the general case and requires an 
underlying structure to be applied in order for the elements of the generated code to work 
together – a structure that is necessary for the tool to work properly but which has 
nothing to do with the generated application itself.  Code generators are large, complex 
and sophisticated applications.  They provide the ability to improve productivity by 
leveraging other people’s work, i.e., the coding of that mundane 50% to 90% that we 
leave out of our models.  But that also means that we are relying on an unknown third 
party to produce perfect code for us. 
 
You simply can’t eliminate human error in the development process by modeling, even 
when you generate code automatically from the model itself.  You can certainly reduce 
human error this way; specifically, you can reduce errors in the design, but you can never 
eliminate them. 
 

You can produce a perfect design and you can implement it 
perfectly, and your system may still be unstable. 
How is this possible?  The author has personally found errors in the compilers used to 
build the code, the binaries that get linked into the developed software by the compiler at 
compile-time, the operating system on which the application runs, the channels over 
which the application communicates, the hardware on which the application runs 
(including such things as the design of the CPU board and the interrupt controller chip), 
and of course, errors in the systems and devices with which the application 
communicates. 
 
A few examples seem appropriate here.  Others will be mentioned later: 
 

• The author once discovered an error in the way that an interrupt controller chip 
worked.  The manufacturer verified that it was, in fact, an error in their product.  
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When asked what they were going to do about it, the manufacturer replied that 
they were going to modify their documentation to advise their customers that the 
chip couldn’t be used in that mode.  This necessitated a major design change to 
the system being developed by the author’s team. 
 

• On the same project, the author discovered that when the CPU pre-fetched a 
certain sequence of bytes, it caused a massive voltage spike across the entire CPU 
card that resulted in a reset of the CPU.  Using an in-circuit emulator, the author 
was able to demonstrate that the anomaly occurred during the pre-fetch – the CPU 
never actually executed the instructions being fetched.  The author was also able 
to demonstrate that the anomaly was independent of the location from which the 
sequence was pre-fetched, and independent of the instructions that were executed 
immediately prior to the pre-fetch.  The result was that the CPU board was re-
designed with a new layout. 
 

• The author once discovered an error in the implementation of the TCP/IP stack of 
a vendor.  The author was able to narrow down the problem to the point where a 
one-line test program was developed that reliably produced the error.  Even with 
this, and the assistance of a team of the author’s engineers, the vendor was unable 
to locate and correct the problem.  This resulted in the re-design of the author’s 
application to avoid the situation that caused the error. 
 

• The author recently implemented an application that communicated with several 
remote devices.  Transaction modelling showed that there was no way that the 
application and the remote devices could get out of synch with each other.  
Nevertheless, they did anyway.  It was discovered that the remote devices were 
randomly dropping messages.  The author ‘tuned’ the application so that the 
situation under which this problem occurred didn’t happen. 

 
None of these problems was avoidable through modelling.  None of these specific 
problems could even be anticipated, although it is completely reasonable to anticipate 
that there would be some kind of problems. 
 

Classes of stability errors 
This paper is about making distributed systems stable, and it seems appropriate at this 
point to define what the author means by a “distributed system.”  So: 
 

• A distributed system is any application of set of applications that consist of more 
than one process or thread, running autonomously on one or more hosts, such that 
the processes or threads communicate with one another, either directly or 
indirectly, and contend with each other for resources. 

 
This can include anything from a multi-threaded Java application running on a single 
host, to a huge, globally distributed information management system, where processes 
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that generate information and store it in a database are essentially communicating 
indirectly and over time with other processes that use or consume the information. 
 
In addition to third-party anomalies, there are four classes of stability problems that tend 
to occur in distributed systems: 
 

• Race conditions – These occur when a shared resource is not adequately 
protected by a semaphore.  They also occur as a result of ‘hysteresis’, i.e., the 
lagging of an effect behind its cause.  Complex networked systems are 
particularly prone to this phenomenon, due to the delays in transmitting 
information, including state information, over a network.  In practice, it’s 
extremely difficult to completely avoid these errors. 
 

• Boundary/Limit problems – These include the ubiquitous “buffer overrun” that 
is so often exploited by hackers to launch malicious code.  But it occurs in other 
situations as well.  Computers have limited resources, including memory, disk 
space, I/O channels, etc.  When these resources are exhausted, the software is 
forced to execute an error path through its code.  These error paths are frequently 
not well thought out and not well tested.  Unpredictable results can occur when 
adequate attention has not been paid to the design of these error paths.  This 
happens all too often, because it is difficult for developers to conceive of running 
out of resources on a modern computer, so they tend to focus their attention in 
other areas.  But it does happen, particularly when there are other applications 
running on the same machine at the same time, or using the same network 
resources at the same time.  It’s also possible to cause third-party applications to 
crash and bring down the entire host, even when your own software contains no 
errors at all.  It’s interesting to note that buffer overruns are still detected and 
reported with high frequency by computer security organizations, such as the 
Computer Emergency Response Team (CERT), despite the use of modern 
compilers designed to prevent this.  It seems like not a week goes by that the 
author receives another CERT advisory containing the phrase, “… multiple buffer 
overruns detected in …” 
 

• Resource Leaks – These occur when a resource is used and then not freed when 
processing has been completed.  Languages such as Java that do automatic 
garbage collection help to minimize this.  However, the author has found that it is 
still possible to create resource leaks even with Java.  And garbage collection 
introduces random delays in processing that tend to exacerbate the problem of 
race conditions. 
 

• Deadlocks – These occur when two or more processes become blocked while 
waiting for each other to release a resource.  None of the processes involved can 
release the resource because they are blocked.  This can happen with any kind of 
resource. 
 
It’s also possible to cause deadlocks in third-party applications.  The author once 
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discovered a deadlock problem in which the operating system went into a tight 
loop where a page kept getting swapped into and out of memory.  The operating 
system could never exit the loop because the correct page was never in memory 
when the test-and-exit operation was performed.  Does deadlocking the operating 
system count as a deadlock in your application?  If your application creates the 
conditions under which this occurs, then you bet it does.  And you can’t eliminate 
it by modelling. 

 

Attitude 
Is it legitimate to say something like, “Gee, Mr. Customer, we’re sorry that the system 
you paid us all that money to develop doesn’t work.  We have no idea why.  But we can 
show you conclusive proof that it’s not our fault!”  Can you say, “Lawsuit?”  The author 
used to tease certain members of a particular development team about this attitude, 
suggesting that to listen to them, the company’s slogan ought to be, “It’s not our fault!” 
 
The team in question had done the appropriate modelling up front.  They had also built 
prototypes to validate their models (of course, the modelling and prototyping was done 
with a later version of the operating system from the one on which the modelling and 
prototyping had been performed, and the application had been built with a later version of 
the compiler than the one used in prototyping).  They had conducted testing of their 
middleware product prior to delivering it to the rest of the project.  They couldn’t 
conceive of how their product could possibly be unstable.  Nevertheless, their product 
was so unstable (it never managed to run for more than 20 minutes at a time) that the 
project that relied on it (several million lines of code and hundreds of millions of dollars 
in budget) was unable to keep going long enough to complete a single test during the 
system-level test phase.  This caused the project to slip by a rate of about 3 man-months 
per day, as over 125 project personnel sat around, unable to make any progress.  A crash 
would occur, the development team members would race down to the test area to 
diagnose the problem, and they would discover that there was no evidence left to indicate 
what might have happened.  Quel dommage! 
 
Needless to say, nobody was pleased with this situation.  The development team had no 
idea how to address this problem, so they simply threw up their hands.  This attitude 
didn’t go over real well with the customer, whose people kept having visions of their 
careers circling the drain. 
 
The correct response was to acknowledge the stability problems existed and to formulate 
and implement a strategy for detecting and correcting them.  This should have been done 
up-front, during the planning phase of the project, when resources could have been set 
aside and allocated to this activity.  But it wasn’t.  The program management team and 
the development team shared the attitude that modelling and prototyping would prevent 
the situation from ever occurring.  They were wrong.  They performed the stability 
testing activity anyway, but as a cost overrun.  It is interesting to note however, that 
saving a mere three days of schedule slip in the project was adequate to pay for the cost 
of the whole activity. 
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There is another attitude that deserves mentioning.  At one company where the author 
used to work long ago, the CEO of the company pulled the author aside one day and 
explained that while our company had very limited resources, our customers had a couple 
of orders of magnitude more people than we had developers, that they worked with our 
product all day long, that they would find our problems a lot more quickly than we 
would, and they wouldn’t be shy about calling us up to tell us about it.  This person was 
also very adept at getting our customers to pay us to fix our mistakes.  Needless to say, 
this company didn’t get a lot of repeat business.  And our developers spend an inordinate 
amount of time traveling to far away places to diagnose and fix problems that we could 
have corrected a lot more cheaply and efficiently at home, had we been allowed to do 
adequate testing.  
 
Lastly, it is naïve to assume that using a third party solution such as J2EE’s App Server, 
IBM’s Websphere, Microsoft products, etc., will provide any insulation from stability 
problems.  These are large, complex applications that provide a great boost to overall 
productivity, but it is naïve and unreasonable to assume that they come free of bugs. 
 

Detecting and Correcting Stability Problems 
So, how does one detect and correct stability problems?  Well, by doing stability testing, 
of course.  Let’s say for example, that you have a messaging subsystem that has the 
characteristic that it randomly drops messages at a frequency of about 1 in 10,000.  
Depending on the nature of your system, this might manifest itself as a failure of the 
applications using the messaging subsystem maybe once every few hours, or every few 
days, or every few weeks.  This is not an easy problem to debug.  We need to increase the 
frequency of errors to seconds, or at most minutes, so we can effectively diagnose what is 
happening. 
 
Since, in our example, we are talking about a messaging subsystem, it only makes sense 
to design a test application that sends messages through the subsystem – lots of messages.  
If, for example, the subsystem is specced to handle 10 messages a second, we design a 
test application that will try to send messages at a rate of 100 per second.  This not only 
drives the messaging system at its maximum possible rate, it also creates a backlog that 
that consumes all available resources, and eventually drives the subsystem to execute its 
error paths.  This allows us to detect boundary limit problems, resource leaks and 
deadlocks of the type that occur from improperly designed queues. 
 
Since race conditions and certain types of deadlocks occur as a result of a random 
confluence of circumstances, this approach is also effective in dramatically improving the 
probability of detecting them. 
 
How many messages do we need to send through our system in order to have, say, a 95% 
chance of encountering one or more errors?  This is not hard to calculate.  Assuming each 
message represents a separate, discrete, independent event, then in our hypothetical 
subsystem-under-test, there is a probability of 0.9999 that the message will be handled 
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correctly.  There is a (0.9999)2 probability of two messages in a row being handled 
successfully, and a (0.9999)x probability of ‘X’ messages in a row being handled 
correctly.  The probability of 1 or more errors occurring in ‘X’ messages is then equal to 
1 minus the probability that no errors will occur, or 1 - (0.9999)x.  For a 95% coverage 
rate, we set:   0.95 = 1 - (0.9999)x and solve for ‘X’.  This is the equivalent of solving:  
0.05 = (0.9999)x.  Allowing for round-off, this works out to 29,956 messages.  If you 
want to have a higher probability of detecting and error, you have to send more messages.  
If you have a higher frequency of error, you will have a higher probability of detection 
with the same number of messages. 
 
Usually, you want to design software to be robust enough to handle certain kinds of 
random errors and keep on running.  Not so with test software.  You want to design your 
test software to stop as soon as it detects and error, and report as much information about 
the error as possible in order to aid in debugging.  The developers of the software-under-
test can add monitoring and debugging code to their software which can be triggered by 
the test software as soon as an error is detected in order to save state information about 
the software-under-test.  Using this information, the developers can then hone in on the 
cause of the problem. 
 
A distributed system or a distributed application may have any number of functional 
capabilities that are susceptible to race conditions, boundary/limit problems, resource 
leaks and deadlocks.  These should all be identified and stability tests designed of each.  
Messaging was just one example.  Typically, any operation that involves interaction with 
another process or thread, or which utilizes shared resources is a candidate. 
 

Porting Distributed Applications to New Platforms 
Assume for the moment that one could perfectly model a distributed application, the 
operating system and environment (other applications running concurrently) under which 
it runs, the hardware on which it runs, and the systems and devices that it communicates 
with.  What happens when one then attempts to port the application to a new platform?  
The answer should be obvious.  How many readers have experienced the thrill of having 
their applications break or become unstable when they upgraded to a new version of 
Microsoft Windows, for example. 
 
Even when you use a portable programming language (i.e., “write once, run anywhere”) 
such as Java, you have to be aware that on a new host, the implementation of the virtual 
machine will necessarily be somewhat different, the timing of operations will be 
different, your application may rely on some obscure, undocumented feature of the 
language that no longer works in the new environment, etc. 
 
How do we deal with this problem?  Do we painstakingly measure and collect data on all 
of the operating characteristics of the new environment, factor these into our model, and 
then fix all of the stability problems that the model then predicts?  Or, do we re-run the 
stability tests?  Certainly, some basic level of modelling may seem appropriate before 
investing in the new environment, or paying the costs associated with porting to the new 
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environment.  But, once you have the new environment, your ported application and your 
suite of stability tests, what’s to be gained? 
 
Modelling is itself an expensive process, and there comes a point in the development life 
cycle when further modelling or greater fidelity in the model becomes cost-prohibitive.  
This is obviously true in the porting situation, but it also applies to the initial 
development situation, where the cost of design errors is significantly higher. 
 

Conclusion 
Modelling is a necessary activity in order to avoid making costly design mistakes.  But it 
is not sufficient by itself to prevent all stability problems.  Real-world systems are built 
by fallible humans who make mistakes in design, modelling, implementation and 
integration.  Models are also dependent on the validity of the assumptions on which they 
are based as well as the robustness and fidelity of the model.  In addition, there is always 
the potential for unanticipated problems caused by third-party products upon which the 
system being designed depends, or which run concurrently on the same hosts as the 
system being designed. 
 
Real “system architects” are people who design, develop and field real systems.  They 
understand that real systems can be incredibly complex and are essentially non-
deterministic in nature.  They are comfortable with the concept of feedback control loops, 
and their application to the development process, including the use of design reviews, 
unit testing, beta testing, stability testing, independent verification and validation, etc. 
 
It’s necessary to adopt a realistic and pragmatic attitude toward system stability in order 
to achieve it.  Realistically, system stability can only be adequately accomplished through 
stability testing.  This activity must be planned and budgeted just like every other activity 
on a project.  It’s going to happen anyway, whether you plan for it or not.  The only 
difference is how well you manage it. 
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